Matrix extension and biorthogonal multiwavelet construction
نویسندگان
چکیده
منابع مشابه
Interpolatory biorthogonal multiwavelet transforms based on Hermite splines
We present new multiwavelet transforms for discrete signals. The transforms are implemented in two phases: 1. Pre (post)processing which transform the scalar signal into the vector one (and back). 2.Wavelet transforms of the vector signal. Both phases are performed in a lifting manner. We use the cubic interpolatory Hermite splines as a predicting aggregate in the vector wavelet transform. We p...
متن کاملAn Algorithm for Matrix Extension and Wavelet Construction 3
This paper gives a practical method of extending an nr matrix P (z), r n, with Laurent polynomial entries in one complex variable z, to a square matrix also with Laurent polynomial entries. If P (z) has orthonormal columns when z is restricted to the torus T, it can be extended to a paraunitary matrix. If P (z) has rank r for each z 2 T, it can be extended to a matrix with nonvanishing determin...
متن کاملAn algorithm for matrix extension and wavelet construction
This paper gives a practical method of extending an n× r matrix P (z), r ≤ n, with Laurent polynomial entries in one complex variable z, to a square matrix also with Laurent polynomial entries. If P (z) has orthonormal columns when z is restricted to the torus T, it can be extended to a paraunitary matrix. If P (z) has rank r for each z ∈ T, it can be extended to a matrix with nonvanishing dete...
متن کاملDuality, Biorthogonal Polynomials and Multi–Matrix Models
The statistical distribution of eigenvalues of pairs of coupled random matrices can be expressed in terms of integral kernels having a generalized Christoffel–Darboux form constructed from sequences of biorthogonal polynomials. For measures involving exponentials of a pair of polynomials V1, V2 in two different variables, these kernels may be expressed in terms of finite dimensional “windows” s...
متن کاملConstruction of biorthogonal wavelets from pseudo-splines
Pseudo-splines constitute a new class of refinable functions with B-splines, interpolatory refinable functions and refinable functions with orthonormal shifts as special examples. Pseudo-splines were first introduced by Daubechies, Han, Ron and Shen in [Framelets: MRA-based constructions of wavelet frames, Appl. Comput. Harmon. Anal. 14(1) (2003), 1–46] and Selenick in [Smooth wavelet tight fra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1998
ISSN: 0024-3795
DOI: 10.1016/s0024-3795(97)81514-5